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Abstract We study occurrences of patterns on clusters of size n in random fields on Z
d . We

prove that for a given pattern, there is a constant a > 0 such that the probability that this
pattern occurs at most na times on a cluster of size n is exponentially small. Moreover, for
random fields obeying a certain Markov property, we show that the ratio between the num-
bers of occurrences of two distinct patterns on a cluster is concentrated around a constant
value. This leads to an elegant and simple proof of the ratio limit theorem for these random
fields, which states that the ratio of the probabilities that the cluster of the origin has sizes
n + 1 and n converges as n → ∞. Implications for the maximal cluster in a finite box are
discussed.
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1 Introduction and Main Results

We consider random fields on the lattice Z
d in dimensions d ≥ 2, with a finite state space

S = {0,1, . . . , q − 1} per site for some q ≥ 2. Thus, the configuration space for the mod-
els studied here is � = SZ

d
. This space is endowed with a probability measure P, which

we assume to be translation-invariant. The results in this paper hold under different further
conditions on the measure P, which we will define and discuss first. To do so, for any con-
figuration ω ∈ � and any V ⊂ Z

d , we will write ωV for the configuration restricted to the
set V , that is, ωV is considered to be an element of SV .
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Definition 1.1 (Finite-energy property) We say that the measure P has the finite-energy
property if there exists an h ∈ (0,1) such that for all states s ∈ S,

h ≤ ess inf
σ∈�

P
(
ω(x) = s

∣∣ ωZd\{x} = σZd\{x}
)

≤ ess sup
σ∈�

P
(
ω(x) = s

∣
∣ ωZd\{x} = σZd\{x}

) ≤ 1 − h. (1.1)

Definition 1.2 (Markov property) We say that the measure P has the Markov property if the
state of a site x ∈ Z

d , given the states outside x, only depends on the states of its nearest
neighbours in Z

d and not on the rest of the field, that is, if for all x ∈ Z
d and s ∈ S,

P
(
ω(x) = s

∣
∣ ωZd\{x}

) = P
(
ω(x) = s

∣
∣ ωNx

)
P-a.s., (1.2)

where Nx = {y ∈ Z
d : |y − x| = 1} is the set of neighbours of x.

Observe that if the random field is Markovian, then by translation invariance and (1.2)
it has the finite-energy property (1.1) if and only if for a given vertex x, each state s has
strictly positive probability regardless of the states of the neighbours of x. The Markov
property implies the following “boundary-s Markov property” for every state s ∈ S, which
will actually be sufficient for our purposes:

Definition 1.3 (Boundary-s Markov property) For a finite V ⊂ Z
d , write NV = ⋃

x∈V (Nx \
V ) for the set of neighbours of V . We say that P has the boundary-s Markov property if for
every finite V ⊂ Z

d , given that all sites of NV are in the state s ∈ S, the configuration on V

is conditionally independent of the configuration on Z
d \ (V ∪ NV ).

A special case of the boundary-s Markov property is the so-called empty-boundary
Markov property as defined in [9], which is the boundary-0 Markov property in our ter-
minology.

Note that in the discussion so far, we have considered Markovian properties under
nearest-neighbour dependencies only. Indeed, in the conditional probabilities (1.2) we only
consider nearest neighbours of x, and in our formulation of the boundary-s Markov property,
it suffices that the nearest neighbours of V are in the state s to have independence between V

and the outside world. It is not difficult, however, to extend the methods in this paper to ran-
dom fields with more general dependencies between sites, as long as these dependencies
have finite range.

As a typical example of the kind of random fields we want to study, we consider site
percolation. In this case, q = 2 and for given 0 < p < 1, we take the measure P to be the
Bernoulli product measure Pp such that Pp(ω(x) = 1) = p and Pp(ω(x) = 0) = 1 − p

for each x ∈ Z
d . Since the states of different sites are independent in this case, it is clear

that (1.1) holds with h = min(p,1 − p), and the field is obviously Markovian as well. For
a given percolation configuration ω ∈ �, we say that a site x ∈ Z

d is occupied if ω(x) = 1
and vacant if ω(x) = 0. For convenience, the same terminology will be used for the states
0 and 1 of any random field. This does not attach any special meaning to the states 0 and 1,
since one can always study the random fields obtained by permuting the states of S.

Using the terminology introduced above, we write C(x) = C(x,ω) for the occupied clus-
ter of the site x ∈ Z

d . That is, C(x) is the set of occupied sites (i.e., sites in state 1) that can
be connected to x by a nearest-neighbour path passing only through occupied sites. By con-
vention, we set C(x) = ∅ if ω(x) 	= 1 and we write C = C(0) for the cluster of the origin.
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In general, if X ⊂ Z
d , then the number of sites in X is denoted by |X|. In particular, the

number of sites in the occupied cluster of the origin will be denoted by |C|. The results
in this paper hold under the assumption that the distribution of |C| has an exponential or
stretched exponential tail.

Definition 1.4 ((Sub-)Exponential tail) We say that the cluster-size distribution has an ex-
ponential tail if the limit

μ = lim
n→∞

[
P(|C| = n)

]1/n
(1.3)

exists for some 0 < μ < 1, and a sub-exponential tail if μ = 1 in (1.3).

Definition 1.5 (Stretched exponential tail) We say that the cluster-size distribution has a
stretched exponential tail with exponent β ∈ (0,1) if the limit

ν = lim
n→∞

[
P(n ≤ |C| < ∞)

]1/nβ

(1.4)

exists for some 0 < ν < 1.

We note that, for instance, for subcritical percolation the cluster of the origin has an expo-
nential tail with μ strictly between 0 and 1 [8, Theorems 6.78, 8.61, 8.65]. The result (1.3)
also holds for critical and supercritical percolation, but with μ = 1, which indicates that
the distribution decays slower than exponentially. For supercritical percolation, it is in fact
known that P(n ≤ |C| < ∞) decays like a stretched exponential with β = (d − 1)/d . This
result appears in [2, 5] for d = 2, in [6] for d = 3, and in [7] for d ≥ 4.

It is believed that the behaviour of the cluster-size distribution in Definition 1.4 is rather
typical. That is, (1.3) is expected to be true quite generally for random fields in the non-
percolating regime, i.e., when all clusters are finite. This result follows for instance if one
can show that there exists a constant A > 0 such that

P(|C| = n + m)

n + m
≥ A

P(|C| = n)

n

P(|C| = m)

m
for all n,m ≥ 1. (1.5)

See [12, p. 91] for an example of this supermultiplicativity result in the case of percolation,
which is reproduced in [8, Lemma 6.102]. Furthermore, (1.4) holds in the percolating regime
with an exponent β = (d − 1)/d for models where a Wulff-shape result exists. We have
formulated (1.4) in terms of P(n ≤ |C| < ∞) rather than P(|C| = n), because it is in this
form that stretched exponential decay for some models has been shown from Wulff-shape
arguments. See [2, 5–7] for examples.

An example of a binary random field which does not satisfy the Markov property but
does satisfy the boundary-s Markov property both for s = 0 and for s = 1, is the random-
cluster model [9]. This needs to be made more precise, since this model is defined in terms of
edge occupation statuses rather than site occupation statuses. The model has the boundary-0
Markov property in the sense of Definition 1.3 if we take as neighbours of an edge e those
edges having exactly one endpoint in common with e. It has the boundary-1 Markov prop-
erty if we extend the set of neighbours of e with those edges whose midpoints have distance 1
to the midpoint of e. Both choices of the neighbour-set are appropriate for our methods.

In the random-cluster model, we define the occupied cluster of a site x as the collection of
those occupied edges which are traversed by a nearest-neighbour path on Z

d starting at x and
passing only through occupied edges. Then, for the random-cluster model, the exponential
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decay in (1.3) can be shown by adapting the proof of [8, Lemma 6.102], see the corrected
version of Theorem 5.47 in [9]. Theorem 5.47 in [9] is stated in the more general setting
of finite-energy FKG measures satisfying the empty-boundary (i.e., boundary-0) Markov
property. An important open problem for the random-cluster model is whether μ < 1 in the
subcritical regime (see e.g. [9, Conjecture 5.54]).

1.1 Pattern Theorems

Throughout this paper, we will use Q to denote the cube of diameter r at the origin, that is,
whose minimum in the lexicographic order is the origin:

Q = {x ∈ Z
d : 0 ≤ xi < r for all i = 1,2, . . . , d}, (1.6)

where the diameter r > 0 is considered to be fixed once and for all. The extended cube Q is
obtained by extending Q by 1 unit in all directions, that is,

Q = {x ∈ Z
d : −1 ≤ xi < r + 1 for all i = 1,2, . . . , d}. (1.7)

The boundary of the cube Q is defined as ∂Q = Q \ Q. Likewise, the boundary of Q is

defined as ∂Q = Q \ Q, where, as before, Q is obtained by extending Q by 1 unit in all
directions. While Q always denotes the cube at the origin, we will write Qx to denote the
cube at the site x, that is, Qx = {x + y : y ∈ Q}. The boundary of this cube, the extended
cube at x, and its boundary are defined analogously as ∂Qx = {x + y : y ∈ ∂Q}, Qx =
{x + y : y ∈ Q} and ∂Qx = {x + y : y ∈ ∂Q}.

Definition 1.6 (Pattern) A pattern P is a prescribed configuration of the states of the sites
in the cube Q, that is, P = (P (x) : x ∈ Q) is an element of SQ.

Definition 1.7 (Occurrences of patterns) Suppose that P is a pattern. Then for a given con-
figuration ω ∈ �, we say that P occurs at the site x if ω(x + y) = P (y) for all y ∈ Q. We
say that P occurs at x on the occupied cluster of the origin C if P occurs at x and ∂Qx ⊂ C.

Note that, in our terminology, a pattern only occurs on the cluster of the origin if it
occurs at a site x and the cube Qx is completely surrounded by this cluster. See Fig. 1
for an illustration. The reason for defining occurrences of patterns on C in this way, is to
guarantee that a pattern will always contribute the same number of sites to C whenever it
occurs on C. This fact is crucial for the two-pattern theorems stated below. However, the
standard pattern theorem (Theorem 1.8 below) still holds if we weaken our definition of an
occurrence on C, for instance if we say that a pattern P occurs at x on C if P occurs at x

and ∂Qx ∩ C 	= ∅. This is obvious, because there must be more occurrences of P on C

under the weaker definition.
The standard pattern theorem states that for a given pattern P , if the cluster of the origin

has size n, then, for some a > 0 sufficiently small, it is very unlikely that P occurs less
than an times on this cluster. This statement is true whether or not one allows occurrences of
patterns to overlap. However, in this paper we will also study the ratio between the numbers
of occurrences of two distinct patterns, and for these results it is important that patterns
cannot overlap. We will avoid this by imposing a condition on which occurrences of a pattern
are counted. Let us now explain this in more detail.

First of all, we note that there are patterns P and P ′ for which overlaps are ruled out by
definition. If that is the case, we do not have to impose restrictions on which occurrences
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Fig. 1 A piece of a three-state
(q = 3) random-field
configuration on Z

2, with sites in
states 0, 1 and 2 depicted in
white, black and gray,
respectively. The square
highlights an occurrence of a
pattern of diameter r = 3 at the
site x on the occupied cluster of
the origin

of the patterns we count for the two-pattern theorems (Theorems 1.9 and 1.10) to hold. For
generality, however, we will choose to consider only occurrences of patterns at sites of the
grid V := (r + 2)Zd + (1,1, . . . ,1). That is, we denote by NP = NP (ω) the total number of
occurrences of the pattern P on C at distinct sites of V , and we will study NP rather than the
total number of distinct occurrences of P on C. To explain our choice of V , we note that later
on, we are going to replace occurrences of P at sites of V by occurrences of P ′, and we want
to guarantee that this does not change the state of the origin from occupied to non-occupied.
This is why V has been chosen such that the origin does not belong to Qx for any x ∈ V .

Henceforth, we will write Pn for the measure P conditioned on the event {|C| = n}, that
is, Pn(·) := P(· | ||C| = n). In Sect. 2 we will prove the following result, which is slightly
different from the pattern theorem for lattice clusters appearing in [14] because of the way
we have defined NP :

Theorem 1.8 (Pattern theorem) Suppose that P has the finite-energy property (1.1) and
that the cluster-size distribution satisfies (1.3). Let P be a pattern. Then there exists an
a = a(P ) > 0 such that

lim sup
n→∞

[
Pn(NP ≤ an)

]1/n
< 1. (1.8)

The main new results of this paper, however, concern ratios between the numbers of
occurrences of two distinct patterns P and P ′ on C. In particular, we are interested in pat-
terns P and P ′ such that one of these patterns contributes one more site to the cluster of the
origin than the other pattern if it occurs on C. We shall see that for such patterns, bounds on
the ratio between the number of occurrences of P and the number of occurrences of P ′ lead
directly to bounds on P(|C| = n + 1)/P(|C| = n) if the cluster-size distribution is known to
have an exponential tail.

To state our results, for a given pattern P , we shall write cP for the number of occupied
sites in the pattern P which will be part of the cluster of the origin whenever P occurs on C

at some site. We also introduce the notation

P(�P ) := P
(
ω(x) = P (x) ∀x ∈ Q,ω(x) = 1 ∀x ∈ ∂Q

)
(1.9)

for the “probability of an occurrence of P at the origin surrounded by an occupied cluster”.
Now suppose that the cluster-size distribution satisfies (1.3). Then we define, for a given

pattern P ,

γP := μ−cP P(�P ), (1.10)
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and, for distinct patterns P and P ′,

γPP ′ := γP

γP ′
= μcP ′ P(�P )

μcP P(�P ′)
. (1.11)

We believe that a law of large numbers holds for patterns, stating that there exists a ρ > 0
such that for any pattern P , the number NP is concentrated around ργP for “almost all”
configurations. Although we cannot prove this, the following theorem (which we shall prove
in Sect. 3) implies that if one can prove a law of large numbers for one particular pattern, then
it must hold for all patterns. It states that for “almost all” configurations, the ratio NP /NP ′
is concentrated around γPP ′ = γP /γP ′ for two distinct patterns P and P ′:

Theorem 1.9 (Two-pattern theorem) Let P and P ′ be two distinct patterns. Suppose
that P satisfies the boundary-1 Markov property, and that the cluster-size distribution satis-
fies (1.3). Then for all ε > 0 and γPP ′ as defined in (1.11),

lim sup
n→∞

[
Pn(|NP − γPP ′NP ′ | ≥ εn)

]1/n
< 1. (1.12)

A natural question is whether stronger bounds on the ratio NP /NP ′ hold, showing for
instance that the difference between this ratio and γPP ′ is at most of order |C|α for some
0 < α < 1. Indeed, there are two cases in which we have obtained such stronger bounds.
The first case is the case cP = cP ′ , that is, the case where the cluster size does not change if
one replaces an occurrence of P on C by an occurrence of P ′ on C. The second case is the
case of stretched exponential decay of the cluster-size distribution (i.e., the supercritical case
for percolation). In that case, our stronger bounds on NP − γPP ′NP ′ also lead to a stronger
version of the ratio limit theorem, see Corollary 1.12 below. The stronger version of the
two-pattern theorem reads as follows:

Theorem 1.10 (Strengthened two-pattern theorem) Consider a random field which has the
boundary-1 Markov property, the finite-energy property (1.1) and a cluster-size distribution
satisfying (1.3). Suppose that P and P ′ are two distinct patterns, and let γ = γPP ′ be defined
as in (1.11). Then the following statements hold:

(i) If cP = cP ′ , then for all α > 1
2 and for every ε > 0,

lim sup
n→∞

[
Pn(|NP − γNP ′ | ≥ εnα)

]1/n2α−1

< 1. (1.13)

(ii) If the cluster-size distribution has a stretched exponential tail with exponent β , then for
every α ≥ 1

2 (1 + β) and every ε > 0,

lim sup
n→∞

[
P
(
NP ≥ γNP ′ + ε|C|α ∣∣ n ≤ |C| < ∞)]1/n2α−1

< 1. (1.14)

Remarks (a) We will show in Sect. 3 that if one can prove stretched exponential decay for
P(|C| = n) instead of P(n ≤ |C| < ∞) in (1.4), then (1.14) in Theorem 1.10(ii) can be
replaced by

lim sup
n→∞

[
Pn(NP ≥ γNP ′ + εnα)

]1/n2α−1

< 1. (1.15)
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(b) If in addition to stretched exponential decay for P(|C| = n) one can also prove the
supermultiplicativity result (1.5), then (1.15) can be strengthened further. In that case, we
will show that if cP ′ < cP , then for α = (2 − β)−1 there exists an a0 > 0 such that for every
a ≥ a0,

lim sup
n→∞

[
Pn(NP ≥ γNP ′ + anα)

]1/n2α−1

< 1. (1.16)

Examples where Theorems 1.8, 1.9 and 1.10(i) apply are percolation, the Ising and Potts
models, and, in general, the random-cluster measure. For Theorem 1.10(ii), stretched expo-
nential decay is needed.

1.2 Ratio Limit Theorems

We can use our pattern theorems to prove that the ratio of the probabilities that the occu-
pied cluster of the origin has sizes n + 1 and n converges with n. To prove this, one can
in principle follow Kesten’s argument in [11], where a ratio limit theorem is derived from
a pattern theorem for self-avoiding walks. The same argument also appears in [13, 14]. It
requires that the probability of a configuration changes by a constant factor whenever one
replaces a single occurrence of a pattern P on the cluster of the origin by an occurrence of
another pattern P ′. In our present context, this means that we need to assume the boundary-1
Markov property. However, under this condition we can use our two-pattern theorem (The-
orem 1.9) to give a more elegant and direct proof of the ratio limit theorem, avoiding the
rather technical argument by Kesten. Our proof is presented in Sect. 4.

Corollary 1.11 (Ratio limit theorem) Suppose that P has the finite-energy property (1.1)
and the boundary-1 Markov property, and that (1.3) holds for the cluster-size distribution.
Then the limit μ in (1.3) also satisfies

lim
n→∞

P(|C| = n + 1)

P(|C| = n)
= lim

n→∞
P(n + 1 ≤ |C| < ∞)

P(n ≤ |C| < ∞)
= μ. (1.17)

Examples where Corollary 1.11 applies are percolation, Ising and Potts models, as well
as the random-cluster model for general p and q . Note that in the case of percolation, for
subcritical p, the result in Corollary 1.11 is stronger than (1.3), but still much weaker than
the widely believed tail-behaviour of the cluster-size distribution, namely that there exist
θ = θ(d) ∈ R and A = A(p,d) such that

Pp(|C| ≥ n) = A nθμn[1 + o(1)]. (1.18)

For supercritical p, we can obtain a stronger result than Corollary 1.11 by virtue of our
stronger version of the two-pattern theorem, Theorem 1.10:

Corollary 1.12 (Strengthened ratio limit theorem) Suppose that P has the boundary-1
Markov property and the finite-energy property (1.1), and that the cluster-size distribution
has a stretched exponential tail with exponent β ∈ (0,1). Then, for every ε > 0,

∣
∣∣
∣
P(n + 1 ≤ |C| < ∞)

P(n ≤ |C| < ∞)
− 1

∣
∣∣
∣ ≤ ε

n(1−β)/2
(1.19)
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for sufficiently large n. Hence, for every x > 0 and 0 < α ≤ (1 − β)/2,

lim
n→∞

P(n + 
xnα� ≤ |C| < ∞)

P(n ≤ |C| < ∞)
= 1. (1.20)

Remarks (a) If one can prove stretched exponential decay for P(|C| = n) instead of
P(n ≤ |C| < ∞) in (1.4), then the probabilities P(m ≤ |C| < ∞) for the various m in Corol-
lary 1.12 can be replaced by the corresponding probabilities P(|C| = m).

(b) If in addition to stretched exponential decay for P(|C| = n), one can prove the su-
permultiplicativity result (1.5), then we can derive a stronger lower bound for the ratio
P(|C| = n + 1)/P(|C| = n) by virtue of Remark (b) below Theorem 1.10. Namely, in that
case we can show that there exists a constant A > 0 such that for n sufficiently large,

P(|C| = n + 1)

P(|C| = n)
≥ 1 − A

n(1−β)/(2−β)
. (1.21)

Examples where Corollary 1.12 applies are supercritical percolation, the Ising model and
random-cluster measures in those cases where the Wulff-shape results have been proved
(see [2, 5–7] and the references therein).

1.3 Consequences for Maximal Clusters

In this section, we describe the consequences of the ratio limit theorem for maximal clusters
as derived in [10]. In order to state our results, we need some further notation. Let Bn =
[−n,n]d ∩ Z

d be the cube of width 2n + 1. We let

|Cmax| = |Cmax(ω)| = max
x∈Bn

|C(x)| (1.22)

denote the size of the maximal cluster having a non-empty intersection with Bn. Further-
more, we define the cluster Cle(x) by

Cle(x) =
{

C(x) if x is the left-endpoint of C(x),
∅ otherwise,

(1.23)

where by the left-endpoint of a finite set A ⊂ Z
d , we mean the minimum of A in the lexi-

cographic order. In [10], results were shown for |Cmax| assuming the ratio limit theorem for
the cluster Cle(0) instead of C(0). Therefore, we shall need the following corollary, which
we shall prove simultaneously with Corollary 1.11 in Sect. 4:

Corollary 1.13 (Ratio limit theorem for Cle(0)) Suppose that P has the finite-energy prop-
erty (1.1) and the boundary-1 Markov property, and that (1.3) holds. Then the limit μ in (1.3)
also satisfies

lim
n→∞

P(|Cle(0)| = n + 1)

P(|Cle(0)| = n)
= lim

n→∞
P(n + 1 ≤ |Cle(0)| < ∞)

P(n ≤ |Cle(0)| < ∞)
= μ.

The results for |Cmax| in [10] hold under further conditions on the measure P, that we will
formulate now. We start by introducing a so-called ‘high mixing’ condition. For A ⊆ Z

d , we
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write EA for an event depending only on the site variables in A. Let FA denote the σ -field
generated by the site variables in A. For m > 0, we define

φ(m) = sup
1

|A1|
∣∣P

(
EA1 | EA2

) − P
(
EA1

)∣∣, (1.24)

where the supremum is taken over all finite subsets A1,A2 of Z
d , with d(A1,A2) ≥ m (d

denoting Euclidean distance) and over all EAi
∈ FAi

with P(EA2) > 0.
Note that this φ(m) differs from the usual ϕ-mixing function since we divide by the size

of the dependence set of the event EA1 . This is natural in the context of Gibbsian random
fields, where the classical ϕ-mixing mostly fails (except for the simplest i.i.d. case and
ad-hoc examples of independent copies of one-dimensional Gibbs measures). We are now
ready to formulate the non-uniformly exponentially φ-mixing (NUEM) condition, which
was introduced in [1]:

Definition 1.14 (NUEM) We say that a random field is non-uniformly exponentially
φ-mixing (NUEM) if there exist constants C,c > 0 such that

φ(m) ≤ C exp(−cm) for all m > 0. (1.25)

Examples of random fields satisfying the NUEM condition are Gibbs measures with ex-
ponentially decaying potential in the Dobrushin uniqueness regime, or local transformations
of such measures. Of course, for site percolation, where we have independence, we have
φ ≡ 0. The NUEM condition is weaker than the more often used weak mixing (see [3, 4]
for a definition of weak mixing and the related stronger notion of ratio weak mixing). Weak
mixing holds for (i) the Ising model on Z

d for supercritical temperatures ([3, Corollary 3.8]);
(ii) the Ising model on Z

2 for all temperatures and non-zero external field ([3, Corol-
lary 3.8]); (iii) the Potts model on Z

2 with q ≥ 26 ([3, Corollary 3.9] and [4, Theorem 1.8]);
for general Potts models on Z

d under the assumption of exponential decay of connectivi-
ties and random-cluster uniqueness; (iv) general random-cluster measures on Z

d under the
assumption of exponential decay of connectivities and random-cluster uniqueness ([4, The-
orem 1.6]). We refer to [3, 4] and the references therein for a discussion on mixing aspects.

In the subcritical case, we shall deal with models where the cluster-size distribution has
exponential tails, i.e., we shall assume that P, the law of the random field, satisfies (1.3)
with μ < 1. We shall also assume a second moment condition, which is used in [10] to
prove the asymptotics of the largest connected component. The precise assumption is that
for all α > 1,

lim sup
n→∞

∑

0<|x|<nα

P
(
n ≤ |Cle(x)| < ∞, n ≤ |Cle(0)| < ∞)

P
(
n ≤ |Cle(0)| < ∞) < ∞. (1.26)

In [10, Proposition 3.7], it is shown that for Markov models with the FKG property, (1.26)
follows from (1.3) with μ < 1. An inspection of the proof of [10, Proposition 3.7] shows that
it also applies to models with the FKG property satisfying the boundary-s Markov property
with s = 0.

Let us now state our results for |Cmax|. As an implication of Corollary 1.13, we obtain
the following result on the subcritical maximal cluster:

Theorem 1.15 (Subcritical Gumbel maximal cluster) Assume that P has the finite-energy
property (1.1), is NUEM, and satisfies (1.3) with μ < 1 and (1.26). Then there exists a
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sequence un ∈ N, with un → ∞, real numbers a,ρ > 0 and a bounded sequence an ∈ [a,1],
such that for all x ∈ N,

P(|Cmax| ≤ un + x) = e−anμx + O(n−ρ).

Theorem 1.15 shows that |Cmax| is bounded above and below by Gumbel laws, and
shows in particular that the sequence |Cmax| − un is tight. As explained in more detail
in [10], the statement above in terms of the sequence an is necessary, and is, for in-
stance, also present when dealing with the maximum of n i.i.d. geometric random vari-
ables.

Examples of random fields for which Theorem 1.15 applies are given in the following
corollary:

Corollary 1.16 (Examples subcritical Gumbel maximal clusters) The conclusions in Theo-
rem 1.15 hold in the following special cases:

(i) Subcritical percolation;
(ii) Subcritical Ising model;

(iii) Subcritical random-cluster models satisfying the FKG-property, for which μ < 1.

The assumed FKG-property in Corollary 1.16(iii) is necessary to ensure that (1.26) ap-
plies. See e.g. [9] for a discussion of the FKG-property for random-cluster measures, and [9,
Theorems 5.55, 5.86] for examples of parameter values for which the random-cluster mea-
sure satisfies μ < 1.

Theorem 1.15 follows from [10, Theorem 3.6], and, in the case of percolation, from [10,
Theorem 1.1] combined with [10, Theorem 1.5]. We note that in [10], it was assumed that
the measure P has so-called subcritical clusters1 [10, Definition 3.3(i)], which is implied
by the ratio limit theorem with μ < 1, Corollary 1.13 above. In fact, Corollary 1.13 implies
that ξ and ζ , defined in [10, Definition 3.3(i)], are equal so that the strongest version in [10,
Theorem 3.6] applies.

We now turn to the maximal supercritical cluster, which was investigated in [10] only in
the context of site percolation, to which we will therefore restrict ourselves here as well. For
supercritical p, we define

|Cmax| = max
x∈Bn:|C(x)|<∞

|C(x)| (1.27)

to be the largest finite cluster intersecting the cube. The ratio limit theorem implies that, in
the language of [10, Definition 3.3(ii)], percolation has supercritical clusters. Therefore, [10,
Theorem 3.9] implies the following Gumbel statistics for the largest finite supercritical
cluster:

Theorem 1.17 (Supercritical Gumbel maximal cluster for percolation) Let pc < p < 1 and
let Pp denote the percolation measure with parameter p. There exists a sequence un(x) with
un(x) ∈ N and un(x) → ∞ for all x ∈ R as n → ∞, such that for all x ∈ R,

Pp(|Cmax| ≤ un(x)) = e−e−x + o(1),

where the error term may depend on x.

1We take this opportunity to correct a mistake in Definition 3.3(i) in [10]: the condition that P(|Cle(0)| <

∞) = 1 should read P(|C(0)| < ∞) = 1. Similarly in Definition 3.3(ii).
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1.4 Further Notation Used in the Proofs

Throughout the rest of the paper, we will write cn for the probability that the cluster of the
origin has size n, and pn for the probability that the cluster of the origin is finite and has size
at least n. That is, cn := P(|C| = n) and pn := P(n ≤ |C| < ∞) = ∑∞

m=n cm.

2 Proof of the Pattern Theorem

This section is devoted to the proof of the pattern theorem, Theorem 1.8. Our proof is similar
to the proof in [14] of a pattern theorem stated in a different context. We recall that the
pattern theorem states that for a given pattern P , there exists an a > 0 such that it is very
unlikely that P occurs at less than an distinct sites of the grid V = (r + 2)Zd + (1,1, . . . ,1)

on a cluster of size n.
The proof proceeds roughly as follows. If we assume that one is likely to see at most an

occurrences of P on C at sites of the grid V , then there are many sites left on this grid where
we can create new occurrences of P on C. By creating a single new occurrence, we may
change the size of C, but never by more than |Q| = (r +2)d sites. Consider all configurations
we can generate by introducing δn new occurrences of P on C. For every configuration we
start from, there is an exponential number of ways to introduce δn occurrences of P on C,
and all generated configurations contribute to cm for some m ∈ [n − |Q|δn,n + |Q|δn],
and hence to pn−|Q|δn in particular. However, introducing occurrences of P will change
the probability, and it is furthermore clear that many of the generated configurations will
be obtained multiple times from different starting configurations. Still, if the random field
has the finite-energy property and δ is small enough, we will generate so many distinct
configurations that this contribution wins, and this will prove Theorem 1.8.

Now let us fill in the details of the proof. We start with a lemma:

Lemma 2.1 If limn→∞ c
1/n
n = μ ∈ (0,1], then limn→∞ p

1/n
n = μ as well.

Proof Assume that limn→∞ c
1/n
n = μ for some μ ∈ (0,1]. Since pn ≥ cn, this implies

lim infn→∞ p
1/n
n ≥ μ. For μ = 1, lim supn→∞ p

1/n
n ≤ μ follows from the trivial bound

pn ≤ 1, so it only remains to bound the lim sup for 0 < μ < 1. Choose ε positive and smaller
than 1 − μ. Then we have that for n sufficiently large,

pn =
∞∑

m=0

cn+m ≤
∞∑

m=0

(μ + ε)n+m = (μ + ε)n

1 − μ − ε
. (2.1)

Since ε is arbitrary, this implies lim supn→∞ p
1/n
n ≤ μ, as desired. �

Proof of Theorem 1.8 We want to study the probability that the cluster of the origin has
size n, and P occurs on C at no more than an distinct sites of V . So, for all n ≥ 1 define the
set of relevant configurations by

Sn = {ω ∈ � : |C| = n,NP ≤ an}. (2.2)

Consider a configuration ω ∈ Sn. Then C has size n, which implies that there are at least
n/|Q| =: bn extended cubes at sites of V that intersect C. No more than an of these cubes
can contain an occurrence of P on C. Thus, assuming a < b, with every configuration ω ∈ Sn
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we can associate a collection X(ω) ⊂ V of exactly bn−an sites such that the extended cubes
at these sites intersect C, and P does not occur on C at any of these sites.

For any configuration ω ∈ Sn and site x ∈ X(ω), we can create an occurrence of P at x

on C by vacating all occupied sites of ∂Qx that do not belong to C, occupying all sites
of ∂Qx , and changing the configuration inside Qx into an occurrence of P at x. Here we
emphasise that we first vacate sites on the boundary of Qx to avoid connecting the occu-
pied cluster of the origin to another occupied cluster, whose size we cannot control and
might be infinite. Note that by the described procedure, the size of C can decrease by at
most |Q| sites, because outside the cube Qx we only vacate sites that are not already con-
tained in C. Also note that by the finite-energy property (1.1), the factor by which the prob-
ability changes upon a single introduction of P is bounded from below by a constant of the
form exp(−A |∂Q ∪ Q|) = exp(−A (r + 4)d) for some fixed A > 0.

Now, for every ω ∈ Sn, consider all possible ways of creating occurrences of P at exactly
δn sites chosen from the collection X(ω), where δ > 0 is a small number that will be fixed
later on. There are (

bn−an

δn
) ways of choosing these sites. Write S ′

n for the collection of all
configurations generated in this way. Then in general, the same configuration ω′ ∈ S ′

n can be
obtained from multiple configurations in Sn. However, the only differences between these
configurations can be the local configurations inside the extended cubes and their boundaries
at those sites of V where P occurs on the cluster C(ω′). One can have q |Q∪∂Q| different
configurations inside an extended cube plus its boundary, where we recall that q is the size
of the state space S per site. Also, there are at most (δ + a)n occurrences of P on C if we
create δn new occurrences. Therefore, on the one hand,

P(S ′
n) ≥

(
bn − an

δn

)
e−A |Q∪∂Q|δnq−(δ+a)n|Q∪∂Q|

P(Sn). (2.3)

On the other hand it is clear that for any ω′ ∈ S ′
n, the occupied cluster of the origin is finite

and has size at least n − |Q|δn. Therefore,

P(S ′
n) ≤ pn−|Q|δn. (2.4)

We now divide (2.3) and (2.4) by cn, combine the two resulting inequalities, take n-th
roots on both sides and then the lim supn→∞, using (1.3), Lemma 2.1 and Stirling’s formula.
This leads to

μ−|Q|δ ≥ (b − a)b−a

δδ(b − a − δ)b−a−δ
e−A |Q∪∂Q|δq−(δ+a)|Q∪∂Q| lim sup

n→∞

[
Pn(NP ≤ an)

]1/n
. (2.5)

At this point we may just as well take a = δ. Setting t = δ/(b−a) and μ̃ = μ−|Q|eA |Q∪∂Q| ×
q2|Q∪∂Q|, the previous inequality can be rewritten as

lim sup
n→∞

[
Pn(NP ≤ δn)

]1/n ≤ (
t t (1 − t)1−t μ̃t

)b−δ
. (2.6)

The right-hand side is smaller than 1 whenever t = δ/(b − a) < μ̃−1. Therefore, the left-
hand side is smaller than 1 for sufficiently small δ > 0, which proves Theorem 1.8. �

3 Proofs of the Two-Pattern Theorems

In this section we are interested in the ratio between the numbers of occurrences of two
distinct pattern P and P ′ on C. We will prove, as stated in Theorems 1.9 and 1.10, that
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if the random field has the boundary-1 Markov property, then the ratio NP /NP ′ must be
close to a fixed number γ = γPP ′ defined in (1.11). The basic strategy of the proofs is as
follows. We will consider those configurations such that NP − γNP ′ differs from 0 by at
least εnα occurrences for some ε > 0 and 0 < α ≤ 1. Then we can make this difference
smaller by either turning occurrences of P into occurrences of P ′ or the other way around.
By deriving a bound on the probability of the collection of configurations generated in this
way, in a similar way as in the proof of Theorem 1.8, we can then show that the probability
that |NP − γNP ′ | is at least εnα must be small. We start by proving Theorem 1.9, in which
α = 1, after which we prove Theorem 1.10.

Proof of Theorem 1.9 We will show that under the conditions stated in the theorem, for
every choice of P and P ′ (and every possible value of the corresponding γ = γPP ′ ), and for
all ε > 0,

lim sup
n→∞

[
Pn(NP ≤ γNP ′ − εn)

]1/n ≤ (1 + ε
1+γ

)1+(1+ε)γ −1

(1 + ε)(1+ε)γ −1 < 1. (3.1)

Since this holds for any choice of the two patterns, we can interchange the roles of P and P ′
in (3.1), which also replaces γ = γPP ′ by γ −1 = γP ′P and ε by εγ −1, to obtain

lim sup
n→∞

[
Pn(NP ≥ γNP ′ + εn)

]1/n ≤ (1 + ε
1+γ

)1+γ+ε

(1 + ε
γ
)γ+ε

< 1. (3.2)

These two results together evidently imply Theorem 1.9. Hence, it suffices to derive (3.1).
To derive (3.1), let Sn be the collection of configurations such that |C| = n and NP ≤

γNP ′ − εn. For every ω ∈ Sn, consider all possible ways in which we can change δεn

occurrences of P ′ on C at sites of V into occurrences of P on C, where 0 < δ < 1 will
be fixed later on. Then, for given NP and NP ′ , the ratio of the number of configurations
generated in this way to the number of configurations from which they were obtained, is
given by the factor

(
NP + NP ′

NP + δεn

)(
NP + NP ′

NP

)−1

= NP !
(NP + δεn)!

NP ′ !
(NP ′ − δεn)!

≥ NP !
(NP + δεn)!

(γ −1NP + γ −1εn)!
(γ −1NP + (γ −1 − δ)εn)! , (3.3)

where the last inequality follows from NP ≤ γNP ′ − εn.
Now we observe (by differentiating with respect to N ) that for all k = 1,2, . . . , δεn, the

fraction (γ −1N + (γ −1 − δ)εn + k)/(N + k) is non-increasing in N . Therefore, using the
fact that NP is necessarily smaller than n, we can bound the factor (3.3) by

δεn∏

k=1

γ −1NP + (γ −1 − δ)εn + k

NP + k
≥

δεn∏

k=1

γ −1n + (γ −1 − δ)εn + k

n + k

= n!
(n + δεn)!

(γ −1n + γ −1εn)!
(γ −1n + (γ −1 − δ)εn)! . (3.4)

Note that by Definition 1.7 of an occurrence of a pattern on C, |C| changes exactly by
cP − cP ′ sites whenever a single occurrence of P ′ on C is replaced by an occurrence of P .
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Therefore, for every configuration obtained from ω ∈ Sn by changing δεn occurrences of P ′
on C into occurrences of P on C, the cluster of the origin has size |C| = n − δεnδc , where
δc = cP ′ − cP . Moreover, by virtue of the boundary-1 Markov property, every change of an
occurrence of P ′ on C into an occurrence of P changes the probability of a configuration
by the factor P(�P )/P(�P ′), where we recall the definition (1.9) of P(�P ). Therefore, we
can write

cn−δεnδc

cn

≥
(

P(�P )

P(�P ′)

)δεn
n!

(n + δεn)!
(γ −1n + γ −1εn)!

(γ −1n + (γ −1 − δ)εn)!Pn(NP ≤ γNP ′ −εn). (3.5)

Taking the n-th root on both sides and then the lim supn→∞, using (1.3), (1.11) and Stirling’s
formula, leads to

1 ≥ fδ(ε) lim sup
n→∞

[
Pn(NP ≤ γNP ′ − εn)

]1/n
, (3.6)

where

fδ(x) = (1 + x)(1+x)γ −1

(1 + (1 − δγ )x)γ −1+(γ −1−δ)x(1 + δx)1+δx
. (3.7)

Observe that fδ(0) = 1, and taking the derivative of fδ(x) with respect to x yields

f ′
δ (x)

fδ(x)
= 1

γ
log

(
1 + x

1 + x − δγ x

)
+ δ log

(
1 + x − δγ x

1 + δx

)
. (3.8)

It follows that for all x > 0 and δ ≤ (1 + γ )−1, f ′
δ (x) > 0 and therefore fδ(x) > 1. It is

not difficult to see that for fixed x > 0, fδ(x) is actually maximal at δ = (1 + γ )−1. We
therefore set δ = (1 + γ )−1, and then the desired result (3.1) follows from (3.6). This proves
Theorem 1.9. �

Remark The bound appearing on the right-hand side of (3.1) is not best possible in general.
Indeed, if we restrict ε to the range (0, γ ), then the combinatorial factor (3.3) can also be
bounded by

NP !
(NP + δεn)!

NP ′ !
(NP ′ − δεn)! ≥ (γNP ′ − εn)!

(γNP ′ − (1 − δ)εn)!
NP ′ !

(NP ′ − δεn)!

≥ (γ n − εn)!
(γ n − (1 − δ)εn)!

n!
(n − δεn)! . (3.9)

Here, as before, the first inequality follows from NP ≤ γNP ′ − εn and the second is a
consequence of the fact that NP ′ is necessarily less than n. The same reasoning as in the
previous proof then leads us again to an inequality of the form (3.6), where now the function
fδ(x) is given by

fδ(x) = (1 − xγ −1)γ−x

(1 − (1 − δ)xγ −1)γ−(1−δ)x(1 − δx)1−δx
. (3.10)

As before, for fixed 0 < x < γ , this function is maximal and larger than 1 at δ = (1 + γ )−1.
This leads for 0 < ε < γ to the bound

lim sup
n→∞

[
Pn(NP ≤ γNP ′ − εn)

]1/n ≤ (1 − ε
1+γ

)1+γ−ε

(1 − ε
γ
)γ−ε

< 1. (3.11)
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This bound is better than the bound in (3.1) for small values of γ , but worse than (3.1) for
large values of γ .

Proof of Theorem 1.10 The proof of Theorem 1.10 is similar to the proof of Theorem 1.9
above. We define the set of relevant configurations by

Sn = {ω ∈ � : |C| = n,NP − γNP ′ ≥ εnα}. (3.12)

For every ω ∈ Sn, we can choose δεnα occurrences of P on C at sites of V and turn them
into occurrences of P ′, where 0 < δ < 1 is a number that we will fix later. This will change
the size of C to n + δεnαδc , since δc = cP ′ − cP is the change in |C| if we replace a single
occurrence of P on C by an occurrence of P ′.

For given NP and NP ′ , the ratio of the number of generated configurations in which there
are NP − δεnα occurrences of P on C at sites of V and NP ′ + δεnα occurrences of P ′ on C

at sites of V to the number of configurations in Sn from which they can be generated, is,
similarly to (3.3), given by

(
NP + NP ′

NP − δεnα

)(
NP + NP ′

NP

)−1

= NP !
(NP − δεnα)!

NP ′ !
(NP ′ + δεnα)!

≥ (γNP ′ + εnα)!
(γNP ′ + (1 − δ)εnα)!

NP ′ !
(NP ′ + δεnα)!

≥ (γ n + εnα)!
(n − δεnα)!

n!
(n + δεnα)! . (3.13)

Here, the first inequality follows from NP − γNP ′ ≥ εnα , and in the second inequality we
used monotonicity of the expression in NP ′ , which can be shown by an argument similar to
the one below (3.3), together with the fact that NP ′ ≤ n. We note that we have assumed that
0 < δ ≤ γ −1 to obtain the second inequality.

Because for every configuration generated from ω ∈ Sn, we have that |C| = n + δεnαδc ,
we can write

cn+δεnαδc

cn

≥
(

P(�P ′)
P(�P )

)δεnα

(γ n + εnα)!
(n − δεnα)!

n!
(n + δεnα)!Pn(NP − γNP ′ ≥ εnα). (3.14)

Using Stirling’s formula and substituting (1.11) for γ = γPP ′ , this expression can be rewrit-
ten as

cn+δεnαδc

cn

≥ μδεnαδc e
(γ −1δ− 1

2 γ −1δ2− 1
2 δ2)εn2α−1+o(n2α−1)

Pn(NP − γNP ′ ≥ εnα). (3.15)

We now choose δ = (1 + γ )−1, since this maximizes the middle stretched exponential term
on the right-hand side. Raising to the power n1−2α (here we assume α > 1

2 ) and taking the
lim supn→∞ then leads to

e
− 1

2 (γ+γ 2)−1ε lim sup
n→∞

[
cn+δεnαδc

cn

μ−δεnαδc

]1/n2α−1

≥ lim sup
n→∞

[
Pn(NP − γNP ′ ≥ εnα)

]1/n2α−1

.

(3.16)
Observe that the left-hand side in (3.16) is smaller than 1 if δc = 0, which immediately
proves the first claim of the theorem.
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For δc 	= 0 we need a bound on the ratio of cluster-size probabilities appearing on the
left-hand side in (3.16). The exponential decay (1.3) does not lead to useful bounds, but in
the supercritical case, where μ = 1, the stretched exponential decay (1.4) tells us that

lim sup
n→∞

[
pn+δεnαδc+1−|δc |

pn

]1/nβ

= 1. (3.17)

To make use of this, note that for δ = (1 + γ )−1 and μ = 1, we can multiply (3.15) by cn

and sum over n to obtain

∞∑

m=n

cm+δεmαδc ≥ e
1
2 (γ+γ 2)−1εn2α−1+o(n2α−1)

∞∑

m=n

P(NP − γNP ′ ≥ ε|C|α, |C| = m). (3.18)

Write i(m) = m + 
δεmα�δc for the index of the ck in the sum on the left-hand side, where
we have explicitly rounded the number of changed occurrences of P to an integer. We claim
that this sum is smaller than 2pi(n)+1−|δc |. Indeed, for δc > 0, this follows from the fact that
for all m ≥ n, i(m+ 1) > i(m). On the other hand, when δc < 0, either i(m+ 1) = i(m) + 1
or else i(m + 1) = i(m) + 1 − |δc|. But in the latter case, for m ≥ n, the smallest k > m for
which i(k + 1) 	= i(k) + 1 must be larger than m plus a constant times n1−α . Since α < 1,
this again implies that the left-hand side in (3.18) is smaller than 2pi(n)+1−|δc | (for sufficiently
large n).

We now use this bound on the left-hand side of (3.18), divide the expression by pn, raise
it to the power n1−2α and take the lim supn→∞ to arrive at

e
− 1

2 (γ+γ 2)−1ε lim sup
n→∞

[
2pn+δεnαδc+1−|δc |

pn

]1/n2α−1

≥ lim sup
n→∞

P
(
NP − γNP ′ ≥ ε|C|α ∣

∣ n ≤ |C| < ∞)1/n2α−1

. (3.19)

By (3.17), the left-hand side is smaller than 1 if we take 2α − 1 ≥ β , that is, α ≥ 1
2 (1 + β).

This completes the proof of Theorem 1.10. �

To conclude this section, we will prove the claims in the remarks below Theorem 1.10.
If the stretched exponential decay holds for cn instead of pn in (1.4), then we have
lim supn→∞[cn+δεnαδc /cn]1/nβ = 1 instead of (3.17). This makes the left-hand side in (3.16)
smaller than 1 if we take 2α − 1 ≥ β , which proves the claim in Remark (a). Now consider
the above bound in the case δc < 0 under the condition (1.5) of supermultiplicativity. This
gives

cn−δεnα |δc |
cn

≤ 1

A

δεnα|δc|
cδεnα |δc |

. (3.20)

Using the stretched exponential decay for cn, we obtain from this inequality

lim sup
n→∞

[
cn−δεnα |δc |

cn

]1/nαβ

≤ eξ(δε|δc |)β (3.21)

for some 0 < ξ < ∞. We note that αβ = 2α − 1 if we take α = (2 −β)−1. Then, if we insert
the previous expression into (3.16), we see that the left-hand side becomes smaller than 1
if we take ε larger than some a0 > 0, which proves the statement in Remark (b) following
Theorem 1.10.
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4 Proofs of the Ratio Limit Theorems

We shall now show how the pattern theorems proved above can be combined to derive
the ratio limit theorems (Corollaries 1.11 and 1.12). For this, we shall take a fixed cube
diameter r = 3, and consider two specific patterns P and P ′: P is the pattern such that
the site (1,1, . . . ,1) is occupied and all other sites of Q are vacant, and P ′ is the pattern
such that the origin is occupied and all other sites of Q are vacant, see Fig. 2. Recall that
by Definition 1.7, we say that a pattern occurs at x on the occupied cluster of the origin C

if the pattern occurs at x and ∂Qx ⊂ C. Therefore, an occurrence of the pattern P on C

contributes no sites to the occupied cluster of the origin, but an occurrence of P ′ on C

contributes one site to C. Thus, in our earlier notation used to formulate the pattern theorems,
δc = cP ′ − cP = 1.

For the two patterns P and P ′ and integers i, j ≥ 0, we introduce the notation

cn(i, j) = Pp(|C| = n,NP = i,NP ′ = j). (4.1)

Observe that for percolation, the patterns P and P ′ are chosen such that whenever we change
an occurrence of P on C into an occurrence of P ′ on C, we do not change the probabil-
ity of the configuration. This is, however, not generally the case for a Markovian random
field.

Our proofs of the ratio limit theorems are based on the following observation. Let
Sn(i, j) be the collection of configurations such that |C| = n, NP = i and NP ′ = j . Then,
for every ω ∈ Sn(i, j), there are i ways of changing one occurrence of P on C at a site
of V into an occurrence of P ′ on C, leading to an ω′ ∈ Sn+1(i − 1, j + 1). For each
configuration that we generate in this way, there are j other configurations in the set
Sn(i, j) from which we could have obtained the same configuration by changing one oc-
currence of P on C at a site of V into an occurrence of P ′ on C. Therefore, for i ≥ 1 and
j ≥ 0,

cn+1(i − 1, j + 1) = i

j + 1

P(�P ′)
P(�P )

cn(i, j), (4.2)

where we have again used the boundary-1 Markov property. From this equality one sees
that bounds on the ratio NP /NP ′ will lead directly to bounds on cn+1/cn. We will now use
this to prove Corollaries 1.11 and 1.13 for random fields satisfying the boundary-1 Markov
property.

Proof of Corollaries 1.11 and 1.13 First let us show that if cn+1/cn converges to μ and
pn = ∑∞

m=n cm, then pn+1/pn converges to μ as well. To show this, first assume 0 < μ < 1
and fix 0 < ε < min(μ,1−μ). When cn+1/cn converges to μ, there exists an integer Nε > 0
such that

∣
∣∣
∣
cn+1

cn

− μ

∣
∣∣
∣ ≤ ε (4.3)

for all n > Nε . Observing that

cn

pn

=
[ ∞∑

m=0

cn+m

cn

]−1

=
[

1 +
∞∑

m=1

m∏

k=1

cn+k

cn+k−1

]−1

, (4.4)
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Fig. 2 The patterns P and P ′ in
dimension d = 2. White sites are
vacant, black sites are occupied

it follows that for n > Nε ,

cn

pn

≤
[ ∞∑

m=0

(μ − ε)m

]−1

= 1 − μ + ε, (4.5)

cn

pn

≥
[ ∞∑

m=0

(μ + ε)m

]−1

= 1 − μ − ε. (4.6)

Since pn+1/pn = 1 − cn/pn, this implies limn→∞ pn+1/pn = μ for every 0 < μ < 1. Now
note that (4.5) also applies if μ = 1 and 0 < ε < 1. Since cn/pn ≥ 0 holds trivially, we also
obtain limn→∞ pn+1/pn = μ when μ = 1. Thus, to prove Corollary 1.11, it remains to show
that cn+1/cn converges to μ.

Now let us write c∗
n = P

(|Cle(0)| = n
)

and p∗
n = ∑∞

m=n c∗
m. We can repeat the argument

above (with c∗
n,p

∗
n in place of cn,pn) to see that c∗

n+1/c
∗
n → μ implies p∗

n+1/p
∗
n → μ. How-

ever, for translation-invariant P, we have that cn = nc∗
n for all n ≥ 1 (this is Lemma 4.1

in [10]), so that c∗
n+1/c

∗
n → μ is implied by cn+1/cn → μ. We conclude that establish-

ing that cn+1/cn converges to μ suffices to prove not only Corollary 1.11 but also Corol-
lary 1.13.

We will show that cn+1/cn converges to μ for a random field satisfying the boundary-1
Markov property by using Theorems 1.8 and 1.9. Let the patterns P and P ′ be as above,
and let a > 0 be the constant appearing in Theorem 1.8 for the pattern P ′. Using the nota-
tion (4.1) introduced above, we can write

cn+1

cn

=
n∑

j=−1

n∑

i=1

cn+1(i − 1, j + 1)

cn

. (4.7)

We may use Theorems 1.8 and 1.9 together with (1.3), to restrict the sums in (4.7) at the
cost of introducing an exponentially small error term. For convenience, we write γ = γPP ′
for the constant defined in (1.11). Applying our observation (4.2), we obtain

cn+1

cn

=
n∑

j=an

γj+o(n)∑

i=γj−o(n)

cn+1(i − 1, j + 1)

cn

+ o(1)

=
n∑

j=an

γj+o(n)∑

i=γj−o(n)

i

j + 1

P(�P ′)
P(�P )

cn(i, j)

cn

+ o(1)

=
n∑

j=an

γj+o(n)∑

i=γj−o(n)

(
γ + o(1)

)P(�P ′)
P(�P )

cn(i, j)

cn

+ o(1). (4.8)
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Now we substitute (1.11) and apply Theorems 1.8 and 1.9 again to extend the sums to sums
over all i and j , at the cost of introducing an exponentially small error:

cn+1

cn

= (
μ + o(1)

) n∑

j=0

n∑

i=0

cn(i, j)

cn

+ o(1) = μ + o(1). (4.9)

This proves that the ratio cn+1/cn converges to μ, which completes the proof of Corollar-
ies 1.11 and 1.13. �

Proof of Corollary 1.12 Using the same notations and a similar argument as above, by
Theorems 1.8 and 1.10 we can write

pn+1

pn

=
∞∑

m=n

m∑

j=−1

m∑

i=1

cm+1(i − 1, j + 1)

pn

=
∞∑

m=n

m∑

j=am

∑

i

′ i

j + 1

P(�P ′)
P(�P )

cm(i, j)

pn

+ o
(
n−(1−β)/2

)
, (4.10)

where the prime on the third sum in the second line means that i is restricted to run from
γj − εm(1+β)/2 to γj + εm(1+β)/2, with arbitrary ε > 0. Proceeding as in the proof of Corol-
lary 1.11, this implies that

∣
∣∣
∣
pn+1

pn

− 1

∣
∣∣
∣ ≤ 2ε

an(1−β)/2
(4.11)

for sufficiently large n, as required. This in turn implies

pn+
xnα�
pn

=

xnα�∏

k=1

pn+k

pn+k−1
= [

1 + o
(
n−(1−β)/2

)]
xnα� = 1 + o(1) (4.12)

for all x > 0 and 0 < α ≤ (1 − β)/2, establishing Corollary 1.12. �

We close off this section by proving the statements in the Remarks below Corollary 1.12.
By Remark (a) following Theorem 1.10, if we have stretched exponential decay for the
probabilities cn instead of pn, then instead of (4.10) we can write

cn+1

cn

=
n∑

j=an

∑

i

′ i

j + 1

P(�P ′)
P(�P )

cn(i, j)

cn

+ o
(
n−(1−β)/2

)
, (4.13)

where the prime on the second sum means that i is restricted to run from γj − εn(1+β)/2 to
γj + εn(1+β)/2, with arbitrary ε > 0. In the same way as before, this will lead to

∣∣
∣∣
cn+1

cn

− 1

∣∣
∣∣ ≤ 2ε

an(1−β)/2
. (4.14)

Moreover, by Remark (b) following Theorem 1.10, under the additional condition of su-
permultiplicativity as in (1.5), we may restrict i in the primed sum in (4.10) to the range
[γj − a0n

1/(2−β), n]. The same reasoning as before then leads to

cn+1

cn

≥ 1 − 2a0

an(1−β)/(2−β)
. (4.15)
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